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Abstract 

Traditional analysis of test results with Item Response Theory (IRT) models, and 
classical test theory (CTT) provide unidimensional ability values, which allow for 
ranking of students according to their abilities. Cognitive diagnostic assessment 
(CDA) is aimed at providing formative diagnostic feedback through a fine-grained 
reporting of learners’ skill mastery. The present study, through application of 
deterministic input, noisy ‘‘and’’ gate [de la Torre & Douglas, 2004 (DINA) model], 
investigated the degree to which the items of a high stakes reading comprehension 
test can provide diagnostically useful information.  Through expert rating, a Q-
matrix including five subskills was developed. Using DINA model, student’s skill 
mastery profiles were produced and issues related to the diagnostic capacity of the 
reading test were discussed. Meanwhile, this study pedagogically demonstrates the 
application of the DINA model employing R software. 
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1. Introduction 
 
Cognitive Diagnostic Assessment (CDA) has received much interest in recent years. It  has 
been praised for  providing fine-grained diagnostic feedback through reporting of learners’ 
skill mastery profiles by different researchers (i.e. DiBello, Roussos, & Stout, 2006; 
Embretson, 1991, 1998; Hartz, 2002; Nichols, Chipman, & Brennan, 1995; Tatsuoka, 1983). 
The CDA approach is intended to promote assessment for learning and the learning process 
as opposed to assessment of learning outcome through providing information needed to 
modify instruction and learning in classrooms by teachers (Jang, 2008). “The advantages of 
these models are most apparent in situations where diagnostic feedback needs to be provided 
to respondents, and criterion-referenced interpretations of multiple proficiencies or 
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dispositions are most needed” (Rupp, 2007, p.79). Formative diagnostic information can be 
used to identify strengths and weaknesses of individual learners in the target area of learning 
and instruction, such as English language learning and redesign instructional approaches, 
evaluate instructional resources, and to take appropriate measures to remedy students’ 
weaknesses accordingly. Unlike aggregated test scores based on unidimensional scaling, a 
diagnostic assessment provides detailed feedback about the current state of knowledge and 
skills of learners (Jang, 2008) so that they and their teachers can take appropriate actions to 
remedy their weaknesses in various aspects of second language ability.  

CDA has been applied to second language assessment in two ways: (Jang, 2008; Lee 
& Sawaki, 2009b); (1) inductively to develop a set of diagnostic items or tasks that allow us 
to infer the  knowledge structures and skill processes involved in doing the items or tasks; 
and (2) a retrofitted approach (or reverse-engineered approach) to extract diagnostic 
information from existing non diagnostic tests. Until now, most of the CDA analyses in 
language assessment have focused primarily on retrofitting CDAs to existing tests that were 
not initially developed for the purposes of cognitive diagnosis (Buck & Tatsuoka, 1998; Buck 
et al., 1998; Gao, 2007; Jang, 2005; Kasai, 1997; Lee & Sawaki, 2009a; Sheehan, 1997; von 
Davier, 2005). 

The General English Test (GET) is developed and administered by university of 
Isfahan (UI) as part of the screening process for the PhD programs at this university. The 
reading comprehension test used in the present study was part of GET. It was designed to 
assess examinees’ understanding of college-level reading texts and administered to about 
1,500 PhD applicants to university of Isfahan (UI) yearly, hence a high stakes test. This study 
is the first attempt at investigating the diagnostic potential of the UI reading test. In order to 
maximize the instructional and washback values of the UI reading test, it is useful to explore 
how the  CDMs can be used with the reading part of GET  test . 
 
2. Cognitive Diagnostic Models: An Overview 
 
Rupp and Templin (Rupp & Templin, 2008) define CDMs as “Diagnostic classification 
models are probabilistic, confirmatory multidimensional latent-variable models with a simple 
or complex loading structure” (P. 226).  

They are probabilistic models in that each CDM expresses a given respondent’s 
performance level in terms of the probability of mastery of each attribute separately, or the 
probability of his or her having a specific skill-mastery profile or belonging to each latent 
class(Lee and Sawaki, 2009) . For example, in the present study for k=5 attributes we have 
25= 32 skill mastery profiles (since each of the k skills may be assigned two levels 
(mastery/nonmastery), there are 2k possible skill mastery patterns, where k is the number of 
attributes) representing a latent class each. As you will see later in Table 3, Respondent 5 is 
classified into the first latent class with skill profile of (00000) which indicates mastery of 
none of the skills. The probabilities of belonging to Latent Classes 1, 2, 3, 5, 6, 9, 10, and 13 
are about .60,.008,.004,.005,.37, .001, .004 and .003 respectively and 0 for the rest of the 
latent classes. Therefore she is assigned to the latent class with the highest probability, that is, 
Latent Class 1. For this respondent CDM provides the probabilities that the respondent 
possesses skills 1 and 2 as .0013, 0.07, respectively (below we will explain how to compute 
probabilities for the other three skills). 

Cognitive diagnostic models are also confirmatory in nature, like confirmatory factor 
analysis models, in the sense that latent variables in CDMs are defined a priori by the Q-
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matrix. A Q-matrix (Tatsuka, 1985) is the loading structure of a CDM. It is a hypothesis 
about the required skills for getting each item right (Li, 2011). Another feature of CDMs is 
their multidimensionality. They are multidimensional latent variable models because they 
estimate unobservable learner profiles on more than one attribute. Unlike item response 
theory (IRT) models which assign to respondents a single score on a continuous scale which 
represents a broadly defined ability, CDMs assign respondents to multidimensional skill 
profiles by classifying them as masters versus non masters of each skill involved in the test. 
CDMs are notably different from multidimensional item response theory models and factor 
analysis in terms of characteristics of latent variables (lee and Sawaki, 2009b). Latent 
variables in CDMs are discrete or categorical (e.g., masters/non-masters), whereas ability 
estimates (θ) in multidimensional item response theory models and factor scores in factor 
analysis are continuous. Moreover, they have complex loading structures because each item 
can be specified in relation to multiple attributes. For example, in Figure (1) items two and 
five measure two skills and items four and eight measure three skills hence these four items 
have got a complex loading structure. 

 
Figure 1. Complex loading structure of CDMs 

 

 

 
CDMs classify respondents into classes representing specific mastery/nonmastery 

profiles for the set of attributes specified in the Q-matrix (Henson, Templin, & Willse, 2009; 
von Davier, 2005). For example, for K =5 skills/attributes, a respondent assigned the vector 
(skill mastery patterns) α=(1,1,0,1,0), has been deemed a master of the first, second and 
fourth skills and a non-master of the third and fifth skills. Since respondents’ class 
membership is unknown, these skill mastery patterns into which respondents are assigned are 
referred to as latent classes. For example, in Table 3 Respondent 1 is classified as belonging 
to the latent class with the highest probability, that is, Latent Class1. 

Characteristics of CDMs explained so far, are common among all CDMs. CDMs are 
classified into two classes according to their assumed attribute structure, or the assumed 
relationships among the attributes. One way might be to distinguish models that assume 
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conjunctive relationships from those that assume disjunctive relationships (Fu & Li, 2007). 
Under a conjunctive attribute structure, an item can be successfully answered only if all the 
required attributes for the item have been successfully mastered and executed. Thus, a 
conjunctive structure is noncompensatory in the sense that one attribute cannot be completely 
compensated for by other attributes in terms of item performance; that is all the attributes 
must function in conjunction with each other (conjunctively). In contrast, in a disjunctive 
case, successfully executing only one or some of the attributes required for an item is 
sufficient to answer the item correctly. In other words, the attribute structure is compensatory 
in that strength in one attribute may compensate for weakness in another, thus mastery of all 
attributes involved in an item is not necessarily required for a test taker to answer the item 
correctly (Rupp and Templin, 2008). When attributes involved in a test are disjunctively 
related, mastery of one or some of the attributes can compensate for non mastery of the other 
attributes. Put simply the respondent has got a choice to master any, some, or all the attributes 
in order to provide the correct answer to the items on the test.  
 
2.1. DINA model 
 
DINA is an acronym that stands for the Deterministic Input, Noisy ‘‘And’’ gate (de la Torre 
& Douglas, 2004). Deterministic input of the DINA model indicates whether respondents in 
latent class c have mastered all measured attributes for item i or not. ‘‘And’’ gate refers to 
conjunctive relationship among the attributes and Noisy refers the stochastic element of the 
DINA model which points to the fact that response behavior of the respondents is not 
deterministic (i.e., error-free or nonstochastic) but probabilistic. This stochasticity is due to 
the noise introduced in the process as a result of slip and guessing parameters—that is, 
respondents who have mastered all the skills required for an item can slip and miss the item, 
and those who lack at least one of the skills required can guess and get the item right with 
typically nonzero probabilities (Rupp, 2007). Put another way, deterministically those who 
have mastered all the attributes involved in an item must get the item right, but stochastically 
they are likely to slip and guess.  

Through the years different versions of the DINA model have been developed by 
different researchers. Generalized DINA (G-DINA model) was proposed by de la Torre 
(de la Torre, 2011),  as a generalization of the DINA model. G-DINA can be categorized 
among general CDMs which unlike specific CDMs do not assume restrictive relationship 
such as conjunctive or disjunctive among the attributes involved in providing the correct 
answer to an item. Other examples of general models include general diagnostic model 
(GDM; von Davier, 2005), and log-linear cognitive diagnostic model (LCDM) (Buck & 
Tatsuoka, 1998). G-DINA model relaxes the assumption of equal probability of success for 
all those who lack some or all of the attributes required for an item (de la Torre 2011). The 
DINA model partitions each of the 2k latent classes into two latent groups; the group 
comprised of attribute mastery profile with all the attributes required for item j , ξij=1 or the 
group who have not mastered at least one of the attributes required for an item, ξij = 0. de la 
Torre argues that this assumption might not hold for the group ξij = 0 because in this group 
respondents have got different degrees of deficiency with respect to the attributes required 
hence their probabilities of getting the item right may be different. For example, in the 
reading test under study in the present paper the Q-matrix entry for item 27 is [1 0 1 1 0]. 
According to the DINA model to get this item right one has to have mastered skills one, 
three, and four. DINA model differentiates between those who have mastered all the three 
skills and those who have not mastered at least one of the skills. DINA doesn’t further 
differentiate among the respondents with varying degrees of attribute deficiency. In this 
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model, the probability of success for a respondent who has mastered only one skill and 
another respondent who has mastered two skills is the same. In G-DINA, the probability of 
success for respondents in the second group ξij = 0 is not the same. A respondent who has 
mastered two of the skills required has got higher probability of success than a respondent 
who has mastered only one of the skills. Figures 5 and 6 schematically show how success 
probabilities vary for the group who have not mastered at least one skill required by an item. 

 
Figure 2. DINA model success probabilities for different skill profiles. Reproduced from de 
la Torre (2012) with permission 
 

 

 
 As you can see the probability of success for all latent classes who have not 
mastered at least one of the skills is the same. But in Figure 5 probabilities of success for 
those who have not mastered at least one skill, vary depending on how many and which skills 
they have not mastered.  

 
 
 
 
 
 
 
 
Figure 3. G-DINA model success probabilities for different skill profiles. Reproduced from 
de la Torre (2012) with permission 
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2.1.1. Formal representation of the DINA model 

The DINA models the probability of getting item j right for respondent i, denoted Xij, as  

P(Xij = 1 | ξij) = ( ) 11 ij ij
j js g

ξ ξ−−
     (stochastic part of the model)          (1)   

In this equation ξij is zero or one depending on whether or not the ith respondent possesses 
all the necessary skills for item j.  

ξij = 1

ijq
ik

k

K

α
=
∏

,                             (deterministic part of the model)            (2)   

where sj is the probability of a slip (an incorrect response although the respondent 
possesses all the skills required for that item), and gj is the probability of a guess (a correct 
response although the respondent does not possess all the skills required for that item). 

(.)∏  indicates that the expression following it is multiplied across all attributes from 
attribute 1 (α = 1) to attribute A. If an attribute is not measured by an item, then qia= 0, which 
implies that the value of αik does not matter. If an attribute is measured, then qia= 1, which 
implies that it matters whether αik= 0 or αik =1. Because the product term is defined over all 
attributes, ξij = 1 occurs only when all product terms are 1, which means that all measured 
attributes for item i have been mastered by respondents in Latent Class c. For example, 
consider the 34- item reading test diagnosing five skills in the present study. As you can see 
in Table 2, Item 5 requires skills 2 and 3. Suppose Respondent 1 possesses all five skills. 
Then, 
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ξij =
1

α
=
∏ jkq

k
k

K

i  = 10×11×11×10×10 = 1, 

indicating that the respondent has mastered all the skills  required. (Note that any number 
raised to the power of 0 is 1 and 0 raised to the power of any number is 0.) In contrast, 
suppose respondent 2 possesses skills 1, 3, and 4. Then, for item 5, 

ξij = 
1

α
=
∏ jkq

k
k

K

i  = 10×01×11×10×10 = 0 

indicating that the respondent has not mastered at least one of the skills required. Equation 2 
represents the deterministic part of the model. Deterministically, if ξij=1, respondent should 
correctly respond to the item and if ξij=0 respondent should respond to the item incorrectly. 
However, the DINA model allows for the possibility that respondents who have mastered all 
measured attributes (i.e., respondents in latent class c who have ξij=1) “slip” and incorrectly 
answer the item as well as for the possibility that respondents who have not mastered at least 
one of the measured attributes (i.e., respondents in latent class c who have ξij = 0) “guess” and 
correctly answer the item nevertheless (Rupp, Templin & Henson, 2010). Formally the 
slipping parameter (si) and guessing parameter (gi) are defined as follows: 
 
Si=P(Xic=1| ξic=0)  

which expresses probability of answering item i for respondents in class c correctly (Xic=1) 
when at least one of the attributes required by the item has not been mastered by respondents 
in latent class c (ξic=0). 
 
Si=P(Xic=0 | ξic=1)  

expresses probability of answering item i for respondents in class c incorrectly (Xic=0) when 
all of the required attributes by the item has been mastered by respondents in latent class c 
(ξic=1). 

According to the stochastic part of the model, Equation (1), for a respondent in latent 
class c who has mastered all necessary attributes (ξic=1) the response probability is 

( ) 11 1( 1 1| ) 1ξ −= = = −− j jij is gP X s
  

And for a for a respondent in latent class c who has not mastered all necessary 
attributes (ξic=0) the response probability is ( )0 1 0( 1| ) 1i j jj js g gP X ξ −−= = =  
 

 

 

 

 

Table 1. Response probabilities in the DINA model (Rupp, Templin, & Henson, 2010). 
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Xic=1 

(correct response) 

Xic=0 

(incorrect response) 

ξic= 1 

(mastery of all measured 
attributes)  

1-si si 

ξic= 0 

(nonmastery of all 
measured attributes) 

gi 1-gi 

 

Thus in DINA model the probability of answering an item correctly is a function of 
two different error probabilities depending on which of the two groups distinguished by the 
model, the respondent examinee belongs to; the guessing probability (gj) which represents 
the probability of answering an item correctly when at least one the attribute required has not 
been mastered, and the slipping probability (sj) which represents the probability of failing to 
answer the item correctly when all the attributes required have been mastered. 
 
3. Purpose of the study 
 
The primary focus of the present paper is to investigate the diagnostic capacity of a high 
stakes reading comprehension test which was administered to PhD program applicants at 
university of Isfahan (UI), Iran. Specifically we address the following research question in 
this study: 

Q. To what extent the items of UI reading comprehension test can provide diagnostically 
useful information?  
 To answer this question we specifically focus on the slipping and guessing 
parameters generated by R for each item and Item Discrimination Index (IDI) which we 
compute manually. The secondary purpose of the present paper addresses the problem that 
has contributed to the underutilization of CDMs. de la Torre (2009) noted that CDMs have 
remained underutilized because of two major limitations. First, as compared to traditional 
IRT models, CDMs are relatively novel and in some cases, more complex. Consequently, 
many researchers lack familiarity with these models and their properties. Second, unlike 
traditional IRT models, which can be analyzed using commercially available software such as 
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996), accessible computer programs for 
CDMs are not readily available. As a result, implementations of these models have been 
hampered. 

To address this issue, we demonstrate application of DINA model using R freeware. 
The DINA model was chosen for two reasons; (1) statistically, it is one of the least complex 
CDMs (Rupp, 2007), as compared with more complex models and as a result of  its 
simplicity of estimation and interpretation DINA model has enjoyed much attention in the 
recent CDM literature (Huebner, 2010) and, 2) to demonstrate the application of a CDM we 
had to choose a software that is freely available. We decide to choose R for this purpose 
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because it can be freely downloaded from the internet and has got a wide range of uses and 
new packages by experts all over the world are increasingly developed that can carry a wide 
variety of statistical analyses. Currently the only CDM package available for R does only 
DINA and DINO models.  
 
3.1. Data 
 
Data analyzed in the present study were from 1500 PhD applicants who took a large scale 
reading comprehension test at IU in 2009. Previously admission to PhD programs at any of 
the Iranian universities required the applicants to undergo a strict three-stage screening 
process wherein the applicants had to take a General English test first. The reading part of the 
GET contained of 34 multiple choice items and some other cloze and short answer items. For 
the purpose of the present study polytomously scored items (cloze and short answer) were 
ignored and only the dichotomously scored multiple choice items were used. Participants 
were 56% male and 44% females and all Iranian nationals. In terms of age they ranged from 
24 to 50.  
 
3.2. Q-matrix construction 
 
Lee and Sawaki (2009b) specify the following four steps for doing cognitive diagnostic 
analysis using CDMs: (1) identifying a set of attributes involved in a test; (2 ) constructing Q-
matrix based on the attributes required for providing the correct answer to each item in the 
test ; (3 ) estimating the skill mastery  profiles  for individual respondents based on their 
performance on the test using the CDM; and (4 ) reporting mastery/nonmastery of the skills 
to respondents and other score users. To define attributes involved in a test various sources 
such as test specifications, theories of content domain, item content analysis, think-aloud 
protocol analysis of respondents’ test taking process can be sought (Embretson, 1991; 
Leighton & Gierl, 2007; Leighton, Gierl, & Hunka, 2004). Since the present study is a case of 
retrofitting CDA to an existing non diagnostic test (extracting diagnostic information from an 
existing non diagnostic test), a detailed cognitive model of task performance was not 
available therefore we got two experienced university instructors to brainstorm on the 
possible attributes measured by the test. They specified a set of five attributes underlying the 
reading test, e.g., vocabulary, syntax, extracting explicit information, connecting and 
synthesizing, and making inferences. Then two other university instructors with over five 
years of teaching reading comprehension experience were asked to independently specify the 
attributes measured by each of the 34 reading comprehension items.  

As in all CDMs the present study utilizes a Q matrix (Tatsuoka, 1985), a I × K matrix, 
to indicates the attributes required to get each item right. The elements of the matrix, q ik, are 
valued 1 if the ith item requires the kth skill and 0 if not. Table 2 is part of the Q-matrix 
constructed for the present study. It describes the attributes involved in answering Items 1 to 
5 of the reading comprehends test analyzed in this study. As you can see Item 1 requires Skill 
4, Items 2, 3, and 4 require Skill 3, and Item 5 requires Skills 2 and 3.  

 

 

Table 2. Part of the Q-matirix used in the present study 
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 Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 
Item1 0 0 0 1 0 
Item2 0 0 1 0 0 
Item3 0 0 1 0 0 
Item4 0 0 1 0 0 
Item5 0 1 1 0 0 

 

3.3. Analysis 
 
Using the DINA model, the two item parameters, the guessing and slipping parameters, with 
their standard errors were estimated for 34 reading comprehension items as shown in Table 3. 

 

Table 3. Guessing and slipping parameters of the DINA model 

 guess s e.guess slip s e.slip 
item1 0.548 0.032 0.116 0.01 
item2 0.541 0.02 0.235 0.016 
item3 0.59 0.02 0.055 0.009 
item4 0.665 0.019 0.109 0.012 
item5 0.421 0.019 0.261 0.019 
item6 0.142 0.013 0.733 0.016 
item7 0.223 0.016 0.622 0.019 
item8 0.465 0.02 0.191 0.015 
item9 0.368 0.019 0.551 0.019 
item10 0.349 0.019 0.402 0.018 
item11 0.142 0.013 0.819 0.015 
item12 0.321 0.03 0.412 0.016 
item13 0.615 0.019 0.17 0.014 
item14 0.424 0.02 0.279 0.018 
item15 0.735 0.017 0.009 0.004 
item16 0.587 0.019 0.034 0.007 
item17 0.383 0.019 0.333 0.019 
item18 0.203 0.015 0.663 0.02 
item19 0.366 0.02 0.261 0.017 
item20 0.562 0.02 0.088 0.011 
item21 0.417 0.02 0.273 0.017 
item22 0.323 0.019 0.315 0.018 
item23 0.321 0.019 0.277 0.017 
item24 0.141 0.022 0.569 0.017 
item25 0.298 0.018 0.275 0.018 
item26 0.145 0.015 0.462 0.019 
item27 0.306 0.018 0.642 0.019 
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item28 0.156 0.014 0.74 0.017 
item29 0.127 0.013 0.723 0.016 
item30 0.325 0.03 0.306 0.015 
item31 0.309 0.019 0.401 0.019 
item32 0.321 0.019 0.279 0.018 
item33 0.148 0.014 0.692 0.018 
item34 0.259 0.018 0.584 0.019 
mean 0.36  0.38  

 

The average values of the guessing and slipping parameters are .36 and .38. The mean 
guessing parameter indicates that for the students who have not mastered all the required 
skills for an item, there is still, on average, a 36 percent chance that they will choose the 
correct response and the average slipping parameter indicates that for the students who have 
mastered all the skills required for an item, there is still, on average, a 38 percent chance that 
they will choose the incorrect response. The most informative items on a test are the ones 
whose slipping and guessing probabilities are low (Rupp, et al., 2010). Generally speaking, 
small guessing and slipping parameters indicate a good fit between the diagnostic assessment 
design, the response data, and the postulated DINA model. However there is no hard and fast 
rule as to what constitutes “small”. The results in Table 3 show that some items like 1, 2, 3, 4, 
6, 7,… have higher guessing and/or slipping parameters (>.5) compared to others. Slipping 
and guessing parameters are also schematically represented in Figure 4. 

 
Figure 4. DINA model parameters 

 

 
Table 4 shows probabilities that respondent one to five belong to any of the 32(25) 

latent classes. 

 

Table 4. Posterior skill distribution of the respondents 
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In Table 4 values for each respondent represent the posterior probability that he 

belongs to latent class c with the given skill profile. For example, for Respondent 1 the skill 
profile with highest posterior probability is α1=[00000] which classifies him in the first latent 
class. It means that respondent1 has a 61% chance of actually belonging to latent class one. In 
fact it means that there is a 61% chance that he has not mastered any of the five skills 
required by the reading test. For the same respondent the attribute profile with the second 
highest posterior probability is α6=[00001]. It means that respondent1 has a 38% chance of 

Latent Class Skill Profile Respondent1 Respondent2 Respondent3 Respondent4 Respondent5
1 00000 0.615 0.59 0.608 0.534 0.602 
2 10000 0 0.001 0 0 0.008 
3 01000 0.002 0.021 0.007 0.003 0.004 
4 00100 0 0 0 0.1 0 
5 00010 0.001 0.004 0.004 0.001 0.005 
6 00001 0.38 0.365 0.375 0.33 0.372 
7 11000 0 0 0 0 0 
8 10100 0 0 0 0.002 0 
9 10010 0 0 0 0 0.001 
10 10001 0 0 0 0 0.004 
11 01100 0 0 0 0.002 0 
12 01010 0 0.001 0 0 0 
13 01001 0.002 0.018 0.005 0.003 0.003 
14 00110 0 0 0 0.003 0 
15 00101 0 0 0 0.012 0 
16 00011 0 0 0.001 0 0 
17 11100 0 0 0 0 0 
18 11010 0 0 0 0 0 
19 11001 0 0 0 0 0 
20 10110 0 0 0 0 0 
21 10101 0 0 0 0 0 
22 10011 0 0 0 0 0 
23 01110 0 0 0 0 0 
24 01101 0 0 0 0 0 
25 01011 0 0 0 0 0 
26 00111 0 0 0 0.006 0 
27 11110 0 0 0 0 0 
28 11101 0 0 0 0 0 
29 11011 0 0 0 0 0 
30 10111 0 0 0 0 0 
31 01111 0 0 0 0 0 
32 11111 0 0 0 0.001 0 
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actually belonging to latent class six hence having mastered only the fifth skill required by 
the reading test. 

Table 5 represents the estimated occurrence probabilities of the skill classes and the 
expected frequency of the attribute classes given the model. 

 
Table 5. Class probabilities and expected frequencies 

 Class probability Class exp. frequency 
00000 0.224 346.838 
10000 0.009 13.859 
01000 0.004 5.599 
00100 0.007 10.32 
00010 0.006 8.971 
00001 0.162 251.59 
11000 0.001 2.029 
10100 0.01 15.907 
10010 0.004 6.445 
10001 0.005 7.346 
01100 0 0.271 
01010 0.001 1.118 
01001 0.004 5.523 
00110 0.008 12.004 
00101 0.001 1.431 
00011 0.005 8.418 
11100 0.002 3.595 
11010 0 0.09 
11001 0.001 1.602 
10110 0.003 3.989 
10101 0.002 3.18 
10011 0.016 24.455 
01110 0.001 1.678 
01101 0 0.026 
01011 0 0.499 
00111 0.028 44.089 
11110 0.002 3.577 
11101 0.003 5.141 
11011 0.006 9.836 
10111 0.06 92.471 
01111 0.003 5.265 
11111 0.421 652.841 

 



Iranian Journal of Language Testing, Vol. 3, No. 1, March 2013                          ISSN 2251-7324 

 24

Table 5 provides, for each Latent Class c with the skill profile given, the estimated 
number of respondents in that class and its conversion into a proportion. As we can read from 
the first column of the table approximately 22% of the respondents in the present study 
belong to the first latent class with a skill profile of α1=[00000] hence is expected to have not 
mastered any of the five attributes. Furthermore latent class 32 with attribute profile of 
α32=[11111] has class probability of about .42, indicating that approximately 42% of our 
population is expected to have mastered all five skills. The third column provides the 
expected count of respondents with each class. This count is found by multiplying the value 
from the second column, class probability, by the sample size. For example, for our data we 
see that latent class 1has got class probability of about .22 if we multiply this by the size of 
the population for the present study which is 1550 we get 346.838 which means that 
approximately 346.838 respondents are expected to belong to the first class.  

 
Figure 5. Pattern Occurrence Probabilities 

 

As Figure 5 also shows the two skill patterns with the highest probabilities are skill 
profile1, α1=[00000] and skill profile 32, α32=[11111]. It indicates that in the present study 
about 42% of the respondents were classified into latent class32 as masters of all skills and 
about 22% were classified into latent class1 as masters of non of the five skills. We note ,as 
tables 4 and 5 show, a large number of respondents are classified as having a “flat” profiles 
i.e. masters of either none (00000) or all (11111) attributes rather than a particular 
combination of attributes. This command also gives us skill probabilities in Table 6. The 
table shows that approximately 54% of the respondents have mastered Skill 1 and 71% have 
mastered skill5. 

 
Table 6. Skill probabilities 

Skill1 Skill2 Skill3 Skill4 Skill5 
0.546 0.451 0.552 0.565 0.719 
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In line with other CDM studies, as we can see in the above plot, in the present study 
also most of the respondents have been diagnosed as having flat skill profiles (00000) or 
(11111). The plot shows that skill profile α32=[11111] has the highest probability and the 
skill profile α1=[00000] has got the second highest and skill profile α6=[00001] the third 
highest probability. 

Current versing of CDM package in R produces diagnostic accuracy for each item 
along with AIC and BIC fit indices. However, Item Discrimination Indices (IDI) are 
recommended and preferred to diagnostic accuracy indices, therefore, we computed and used 
IDIs in this study. Diagnostic accuracy indices are not easy to interpret and are going to be 
replaced by IDI in the future versions of CDM (Robiztch, September, 2012, personal 
communication). 

In classical test theory (CTT) discrimination is a measure of the relationship between 
item score and total test score. Unlike many assessments analyzed within CTT or other 
unidimensional IRT models CDMs measure multiple attributes hence the concept of 
discrimination can be expressed as “how well does an item differentiates between 
respondents who have mastered more attributes and respondents who have mastered fewer 
attributes” (Rupp, et. al., 2010). As a matter of fact IDI is a quick and simple measure of the 
diagnostic value of an item. There are two different methods for computing IDI in CDM, one 
global IDI and another method for describing attribute specific item discrimination. DINA 
model contains only item level parameters whose values don not depend on the number of 
attributes that each item is measuring. Unlike models like NIDA which compute separate 
slipping and guessing parameter for each attribute involved in an item, DINA model 
estimates one slipping and guessing parameter per item regardless of the number of attributes 
involved in the item. Rupp, et. al.  argue that in DINA model maximal attribute 
discrimination occurs when comparing a respondent who has mastered all attributes to a 
respondents who has not mastered any measured attributes. Consequently, the values of 
attribute specific item discrimination indices will be identical for each item and only global 
IDIs are reported. Since the new version of CDM is not still out we manually computed 
DINA model IDIs with the following equation;  

 diDINA= (1-si)-gi                                                         (3)  

The last column of Table 7 shows global item discrimination indices. As we can see 
the lower the slipping and guessing values are the higher the IDIs and the better the item is. 
The pattern of IDIs show that most of values fall at low end of the distribution but some like 
23, and 25 are in better condition than the other items. There is no hard and fast rule as to a 
cut off for IDIs but you can compare them to decide which items to include in a test, 
especially if you have the luxury of having more items than necessary (de la Torre, personal 
communication, September 2012). 
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Table 7. item discrimination indices 

Column1 guess s slip s IDI 
item1 0.548 0.116 0.336 
item2 0.541 0.235 0.224 
item3 0.59 0.055 0.355 
item4 0.665 0.109 0.226 
item5 0.421 0.261 0.318 
item6 0.142 0.733 0.125 
item7 0.223 0.622 0.155 
item8 0.465 0.191 0.344 
item9 0.368 0.551 0.081 
item10 0.349 0.402 0.249 
item11 0.142 0.819 0.039 
item12 0.321 0.412 0.267 
item13 0.615 0.17 0.215 
item14 0.424 0.279 0.297 
item15 0.735 0.009 0.256 
item16 0.587 0.034 0.379 
item17 0.383 0.333 0.284 
item18 0.203 0.663 0.134 
item19 0.366 0.261 0.373 
item20 0.562 0.088 0.35 
item21 0.417 0.273 0.31 
item22 0.323 0.315 0.362 
item23 0.321 0.277 0.402 
item24 0.141 0.569 0.29 
item25 0.298 0.275 0.427 
item26 0.145 0.462 0.393 
item27 0.306 0.642 0.052 
item28 0.156 0.74 0.104 
item29 0.127 0.723 0.15 
item30 0.325 0.306 0.369 
item31 0.309 0.401 0.29 
item32 0.321 0.279 0.4 
item33 0.148 0.692 0.16 
item34 0.259 0.584 0.157 
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It is also possible to manually compute the probability that each respondent has 
mastered each individual skill. Heubner, (2010) argues that “since the latent classes are 
mutually exclusive and exhaustive, we may simply add the probabilities of the latent classes 
associated with each skill” (p. 5). For example, for Respondent 5, the probability that he/she 
has mastered Skill 1 is computed by adding the probabilities of him belonging to the latent 
classes associated with skill 1. We can read these probabilities from Table 3, from the skill 
profile column where the values for the first skill are nonzero. As we read down the table we 
see that Skill 1 is associated with the following Latent Classes: 2, 7, 8, 9, 10, 17, 18, 19, 20, 
21, 22, 27, 28, 29, 30, and 32. Now we add up the probabilities of Respondent 5 belonging to 
each one of these latent classes; P(skill1)= 
p([10000])+p([11000])+p([10100])+…….+p([11111]) 

Only three latent classes have nonzero probabilities. Therefore, the probability that 
Respondent 5 has mastered Skill 1 is: .008+.001+.004= .013  

As we see the probability that he has mastered skill one is much less than 1%. 
Similarly we can calculate probabilities of skill2. As we see in table 3 skill 2 is associated 
with the following latent classes:3,7,11,12,13,17,18,19,23,24,25,27,28,29,31, and 32. Now 
we add up probabilities of respondent 5 belonging to each one of these latent classes; 
P(skill1)= p([01000])+p([11000])+p([01100])+…….+p([11111]) 

Because only two latent classes have non zero probabilities, to save space we ignored 
zero probabilities. Therefore probability that respondent five has mastered skill 2 is 
.004+.003= .007  

It is no surprise that the probability that he has mastered the skills is so low because 
he belongs to the first latent class whose members with skill profile of α1=[00000] are 
masters of non of the five skills. 

 
4. Discussion 
 
The present study explored the diagnostic capacity of items on the UI reading comprehension 
test. Rupp et al. (2010) note that diagnostically informative items are those with low slipping 
and guessing parameters. Another index that shows the diagnostic value of an item is IDIs. 
Technically speaking IDI is a difference in the probability for a correct response between 
respondents who have mastered “more” measured attributes for an item and those who have 
mastered “fewer” measured attributes (Rupp et al., 2010). 

The IDIs, as shown in Table 7, are well below .50. IDIs generally vary between 0 and 
1; the higher the IDI the better the diagnostic value of the item is. As we can see from 
Equation 3 above IDI is a function of guessing and slipping parameters for each item. The 
lower the guessing and slipping parameters are the higher the IDI will be. And the reason for 
low IDIs in the present study is high guessing and slipping parameters. As we can see from 
Table 2 guessing and slipping parameters are relatively high. Although there is no consensus 
on how low the guessing parameters should be to be considered low, as a rule of thumb we 
can consider those above the midpoint (>.5) as high. For example, for item four, for those 
who have not mastered all or any of the required skills by the items, still there is about 65% 
chance of getting the item right which sounds unreasonable. But in the case of Item 6 for 
those who have mastered all the subskills required by the item there is about 73% chance of 
getting the item wrong which is also unreasonably high.  
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Two possible explanations for the high guessing parameters can be presented. It may 
be that the required skills are compensatory instead of conjunctive for those items and 
students (which violates the model assumption about the nature of the skills), so the students 
do not necessarily need to have all the required skills to answer these items correctly. An 
important consideration before analyzing the data is determining the attribute structure or the 
relationships among attributes involved in a test. 

If we assume a conjunctive noncompensatory relationship among the subskills, 
models like Latent Class Analysis (LCA) (Yamamoto, 1989), Rule Space Model (RSM) 
(Tatsuoka, 1983), Deterministic Inputs, Noisy- And gate (DINA) model (de la Torre & 
Douglas, 2004; Sijtsma & Junker, 2006) or Non Compensatory Reparameterized Unified 
Model (NC-RUM) which is also known as the Fusion Model (DiBello, Stout, & Roussos, 
1995; Hartz, 2002) can be used. But if we assume a disjunctive compensatory relationships 
among the attributes models like Deterministic Noisy Or-gate (DINO) model (Templin & 
Henson, 2006) or Compensatory Reparameterized Unified Model (RUM) (Hartz, 2002; 
Templin, 2006) can be used. For a good review of CDMs, their features and the available 
software refer to Lee and Sawaki (Lee & Sawaki, 2009a) and Rupp and Templin (2008). 
“Non compensatory models have been preferred for cognitive diagnostic analysis, as they can 
generate more fine grained diagnostic information” (Li, 2011,p.40).  

There is no clear cut answer as to whether noncompensatory models are superior to 
compensatory models with reading tests. Lee and Sawaki (2009a) compared respondent 
classification results across LCA, NC-RUM, and compensatory General Diagnostic Model 
(GDM) (von Davier, 2005) for TOEFL iBT reading and listening data. They found highly 
similar results across the three models. Another study by Jang (Jang, 2005) showed that the 
attribute structure of the TOFEL iBT is a mixture of compensatory and non compensatory 
relationships. Li (2011) suggests that it may seem reasonable to hypothesize that “the 
relationships among subskills depend on the difficulty level of the subskills needed for 
solving a particular item” (p.40). Thus this relationship may change across items within the 
same test. Henson, Templin, and Willse (2008) introduced Log linear Cognitive Diagnostic 
Model (LCDM) which assumes no restrictive relationship such as conjunctive or disjunctive 
among the attributes involved in providing the correct answer to an item. Henson, Templin, 
and Willse (2008) found that the DINA model does not seem reasonable for all items. In 
addition, the LCDM provided some insight as to what model could be more appropriate for 
some items. Thus with LCDM the choice between a compensatory and non compensatory 
model is not an issue of concern and subskills can have varying relationships from item to 
item. To test whether choice of the model accounts for the high slipping and guessing 
parameters, instead of the DINA model one can fit its compensatory analog DINO to the data 
and then compare the general fit indices of the two models such as Akaike Information 
Criterion (AIC) and Bayesian Information Criterion( BIC) (Huebner, 2010). If the fit indices 
of the DINO model are smaller we can conclude that the attribute structure of the test is 
disjunctive compensatory rather than conjunctive noncompensatory. 

Another possible reason for high slipping and guessing parameters is the 
misspecification of the Q-matirix (Rupp & Templin, 2008). The reason for the high slipping 
parameters could be incompleteness of the Q-matrix—some unspecified skills or strategies 
could be required to respond correctly. Rupp and Templin in a study aimed at investigating 
the effects of Q-matrix misspecifications on parameter estimates and misclassification rates 
for the DINA model found that incorrectly omitting the attributes in the Q-matrix the slipping 
parameter for a misspecified item was overestimated most strongly since the item turned out 
to be much easier making it more likely that slipping must have occurred. In contrast, the 
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incorrect addition of attributes in the Q-matrix for a particular item resulted in a strong 
overestimation of the guessing parameter for the misspecified item because the item turned 
out to be much more difficult making it more likely that guessing must have occurred. 

Another significant finding of the present study is the prevalence of “flat” skill 
mastery profiles, namely, “nonmaster of all skills” α1=[00000], and “master of all skills” 
α32=[11111], which is in line with all other CDM studies carried out by other researchers 
(e.g., Lee & Sawaki, 2009b; Li, 2011) . Approximately 42% of the respondents were 
classified as masters of none of the skills, and 62% were classified as masters of all skills. 
Two explanations have been put forward for this finding; 1) it could be due to high positive 
correlations among the attributes (Rupp, et al., 2010), and 2) unidimensionality of the 
measure used, where a master of one skill tends to be a master of another skill, or vice versa 
(Lee & Sawaki, 2009b). 

Since the secondary purpose of the present paper was to demonstrate the application 
of CDM with R freeware, our choice of the model was limited to the DINA model which is 
the only R package available for cognitive diagnostic modeling. Future studies may compare 
results obtained from DINA which assumes conjunctive noncompensatory relationships 
among the attributes involved in a test with LCDM (Henson, Templin, & Willse, 2008) 
which assumes no restrictive relationship such as conjunctive or disjunctive among the 
attributes involved in providing the correct answer to an item.  

Another limitation of the present study was related to attribute definition and Q-
matrix construction. To define attributes in the present study we solely relied on content area 
experts’ judgment. Future studies may combine expert judgment with think aloud protocol 
analysis of respondents’ test taking processes. We could have also submitted the Q-matrix to 
empirical analysis based on Fusion model. Fusion model provides item difficulty and 
discrimination parameter estimates which are helpful in identifying potential Q-matrix 
misspecification.  
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Appendix 

DINA application with R 

R is a freeware software that can be found at: http://www.r-project.org/. There are two 
windows that you will mainly use in R. The main window is called the console and it is 
where you can both type commands and see the results of executing these commands (in 
other words, see the output of your analysis). Rather than writing commands directly into he 
console you can also write them in a separate window (known as the editor window). 
Working with this window has the advantage that you can save collections of commands as a 
file that you can reuse at another point in time. As you open R automatically, the console 
window also opens. To open the editor window first open R then go to File. If you want to 
modify already saved R commands click on open script and then go to the path where you 
have previously saved the editor but if you want to write new commands click on new script. 

R comes with some base functions ready for you to use. However to get the most out of it we 
need to install packages that enable us to do particular things. For example,, to do cognitive 
diagnostic modeling we need to install CDM package. We can install packages in two ways: 
through the menus or using a command. If you know the package that you want to install then 
the simplest way is to execute this command:  

Install.packages(“package.name”) 

For example, to install CDM package we replace “package. name” with “CDM”, therefore 
we execute:  

Install.packages(“CDM”)     (1) 

Note that the name of the package must be enclosed in speech marks. To execute a command 
we put the cursor on it and press ctrl+R. 

Alternatively we can install a package through the menu system. To do so go the R window 
select Packages install package(s) a window will open that first asks you to select the 
country where CRAN(Comprehensive R Archive Network) is located. For security reasons 
identical versions (mirrors) of CRAN are stored in different locations across the globe. As a 
resident of Iran I would likely access CRAN in Iran, whereas if you are in a different country 
you can get access to the copy of the CRAN in your own country(or one nearby). Having 
selected the CRAN nearest to you from the llis and clicked on OK , a new dialog box will 
open that lists all of the available packages. Click on the one or one that you want(you can 
select several by holding down the Ctrl key as you click) and then click on OK. This will 
have the same effect as using the Install.packages(“ “) command. 

Once a package is installed you need to load it for R to know that you are using it. You need 
to install the package only once but you need to load it each time you start a new session of 
R. 

To load a package we simply execute this general command: 
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library(package.name) 

For example, to load CDM package we simply replace package.name with CDM:  

library(CDM)       (2) 

Alternatively we can load packages through the menu system. You can load packages by 
selecting Packages Load package which opens a dialog box with all of the available 
packages that you could load.  

Every time you want to do anything(e.g., load or save a file) from R you have to establish a 
working directory in which you want to store your data files, any scripts associated with the 
analysis or your workspace. we can set the working directory, either through the menus or 
using a command. We can use the setwd() command to specify the working directory:  

setwd(“location of your file”)  

To specify the location of your file you can simply go to the drive and folder where your file 
is to be stored click in the address bar in the window copy and paste the file path into the 
brackets. For example, in this case we have saved my data file and Q-matrix file in drive H 
and folder DINA therefor I go to the folder DINA click in the address bar as shown in the 
figure below, the file path gets blue. I copy the path and past it as follows: 

setwd(“H:/DINA”)      (3) 

Note that we have to change all the backslashes(\) in the file path into slashes(/). 
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Alternatively we can click anywhere in the R console. In the File select Change dir… 

A dialog box will open that asks you to select the path where you want to save your files or 
where your data and Q-matrix files are stored as follows: 
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Select the folder and click on OK.  

The foreign package can be used to import directly data files into R. The two most 
commonly used R-friendly formats are tab-delimited test(.txt in Excel and .dat in SPSS) 
where values are separated with a tab space and comma separated values (.csv) where the 
values or data are separated with commas.  

If we have saved the data as CSV file, then we can import these data to a data frame using the 
read.csv function. The general form of the function is: 

Dataframe.name<-read.csv(“filename.extension”,header=TRUE) 

To do cognitive diagnostic modeling we must have two separate files: a data file where the 
respondents’ data are stored and a Q-matrix file where the attributes or subskills measured by 
each item are specified. 

Let’s imagine we have stored our data and Q-matrix file in dat and csv files called 
Reading.dat/Q-matrix.csv respectively in the directory set before. To load these data into a 
dataframe we could execute the following commands: 

setwd(“H:/DINA”)       (3) 

mydata<-read.delim(“Reading.dat”,header=TRUE) (4) 
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QDINA<-read.csv(“Q-matrix.csv”,header=FALSE) (5) 

The first command sets the directory to the D:/DINA path where our data file (Reading.dat) 
and Q-matrix file (Q-matrix.csv). with these command we tell R where to read the data file 
and Q-matrix file from and where to save the new data frames. 

Prior to explaining the second command lets’s diverge a little to present some general points 
about how commands are produced and interpreted in R. Commands in R are generally made 
up of two parts: objects and functions. These are separated by ‘<-‘ which you can think of as 
meaning ‘ is created from’. As such the general form of a command is 

Object<-function 

Which means ‘object is created from function’. An object is anything created in R. Functions 
are the things that you do in R to create your objects.  

 The second command will create an object called mydata (it could be any name) by reading 
the data file called ‘Reading.dat’ which is stored in the directory specified. 

The third command will create another object called QDINA (it could be any name) by 
reading the file called ‘Q-matrix.dat’ which is stored in the directory specified. 

The header = TRUE in the commands tells R that the data files has variable names in the first 
row of the file but if you have saved the file without variable names then you should use 
header = FALSE  

For the purpose of the present study we used cognitive diagnostic modeling package 
developed by Robitzsch et al. (2012). The main function of CDM is: 

din(data,q.matrix,rule="DINA") 

With the objects earlier created(mydata and QDINA ) the function becomes: 

dina<-din(data=mydata,Q-matrix=QDINA,rule=“DINA”) (6) 

This command will create an object called dina (it could be any name) from the data called 
mydata and Q-matrix called QDINA according to DINA rule 

To execute the command we put the cursor on the command line and then press Ctrl+R keys. 
You have to wait for a while till the computations are performed depending of how fast your 
PC is. As you can see in R console window, after some iterations the model converges.  

The guessing and slipping parameters and their standard errors can be estimated by execution 
of the following command. 

dina$coef        (7) 

Dollar sign ($) in R means that the operation specified after $ should be carried out within the 
object named before $. This command tells R to compute the coefficients from the object 
made in command 6. Table 2 shows the results 
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Executing the command  

dina$posterior  

returns a matrix given the posterior skill distribution for all respondents. Table 3 shows the 
probabilities that each respondent belongs to any of the 32(25) latent classes. For space 
considerations the table has been transposed; the rows represent latent classes and the 
columns represent the respondents. We have also rounded the numbers to two decimal points 
by executing the following command: 

round(dina$posterior[, 1:32],2) 

this command tells R to round the output from the command dina$posterior to 2 decimal 
points in a way that rows remain intact(note that in the brackets we don’t have anything 
before comma therefore the command is not applied to the rows) and columns 1 to 32 are 
rounded.  

Executing the following command: 

dina$attribute.patt  

returns the estimated occurrence probabilities of the skill classes and the expected frequency 
of the attribute classes given the model, as shown in Table 4. 

Executing the following command: 

print(din) 

returns highest skill pattern probabilities as shown in Table 5. 

We can also get a visual inspection of the outputs by executing the following command: 

plot(din) 

Each time that we press Enter key we get one of the following plots shown above; 

There is one more output which can be requested from R by executing the command; 

summary(dina) 

it returns a table with the diagnostic accuracy of each item along with AIC and BIC fit 
indices. diagnostic accuracy indices are not easy to interpret and are going to be replaced with 
Item Discrimination Indices (IDI). Robiztch (personal communication, September, 2012) 
recommends ignoring the diagnostic accuracy indices and report IDIs instead. Therefore, we 
manually computed IDIs using Equation 3 above and presented them in Table 7. 

 

 

 


